Сплайновая интерполяция в графическом окне
Сплайновая интерполяция в графическом окне
Попытка аппроксимации полиномом 8-й степени не дает положительного результата — кривая проходит внутри облака точек, совершенно не интерполируя это облако.
Однако если применить сплайновую интерполяцию, то картина кардинально меняется. На этот раз кусочная линия интерполяции прекрасно проходит через все точки и поразительно напоминает синусоиду. Даже ее пики со значениями 1 и -1 воспроизводятся удивительно точно, причем и в случаях, когда на них не попадают узловые точки.
Причина столь великолепного результата кроется в уже отмеченных ранее особенностях сплайновой интерполяции - она выполняется по трем ближайшим
точкам, причем эти тройки точек постепенно перемещаются от начала точечного графика функции к ее концу. Кроме того, непрерывность первой и второй производных при сплайновой интерполяции делает кривую очень плавной, что характерно и для первичной функции — синусоиды. Так что данный пример просто является удачным случаем применения сплайновой интерполяции.