Интерполяция периодических функций рядом Фурье



Интерполяция периодических функций рядом Фурье

Под интерполяцией обычно подразумевают вычисление значений функции f(x) в промежутках между узловыми точками. Линейная, квадратичная и полиномиальная интерполяция реализуются при полиномиальной аппроксимации. А вот для периодических (и особенно для гладких периодических) функций хорошие результаты может дать их интерполяция тригонометрическим рядом Фурье. Для этого используется следующая функция:

  • interpft(x.n) — возвращает вектор у, содержащий значения периодической функции, определенные в п равномерно расположенных точках. Если length(x)=rr; и х имеет интервал дискретизации dx, то интервал дискретизации для у составляет dy=dx*m/n, причем п не может быть меньше, чем т. Если X — матрица, interpft оперирует столбцами X, возвращая матрицу Y с таким же числом столбцов, как и у X, но с п строками. Функция y=interpft(x.n.dim) работает либо со строками, либо со столбцами в зависимости от значения параметра dim.



Содержание раздела