имеет ту же структуру, что
Пример 2
» S = speye(4)
S =
(1,1) 1
(2.2) 1
(3.3) 1
(4.4) 1
Матрица R = sprand(S) имеет ту же структуру, что и разреженная матрица S, но ее элементы распределены по равномерному закону:
- R = sprand(m,n,density) — возвращает случайную разреженную матрицу размера mxn, которая имеет приблизительно densityxmxn равномерно распределенных ненулевых элементов (0<density<l);
- R = sprand(m,n,density,re) — в дополнение к этому имеет в числе параметров число обусловленности по отношению к операции обращения, приблизительно равное rс. Если вектор гс имеет длину lr (A,r<min(m.n)), то матрица R имеет гс в качестве своих первых 1 r сингулярных чисел, все другие значения равны нулю. В этом случае матрица R генерируется с помощью матриц случайных плоских вращений, которые применяются к диагональной матрице с заданными сингулярными числами. Такие матрицы играют важную роль при анализе алгебраических и топологических структур.